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J .  Phys.: Condens. Matter 3 (1991) 2985-3006. Printed in the UK 

S = 4 magnetic chains as domain wall systems 

H J Mikeska, S Miyashitat and G H Ristow 
Institut fur Theoretische Physik. Univenitat Hannover, Federal Republic of Germany 

Received 30 April 1990. in final form 21 December 1990 

Abstract. We describe S = ? Isig-like magneticchainscompletelyin termsofdomain walls, 
We formulate domain wall creation and annihilation operators as fermion operaton and 
calculate the domain wallcontent ofthe groundstate andofexcitedstates. Fromexact results 
for finite chains and from the solution in the one-domain wall subspace we find that a single 
domainwall behaveslikeafreeparticleinawell.Thhe transition between the twoequivalent 
ground states of Ising-like S = t chains is found to be dominated by quantum diffusion: the 
approachofthe magnetization to the asymptotic behaviour is algebraic and not exponential. 
The analogy of this observation to interface fluctuations in the two-dimensional classical 
systemispointedout. Fordomain wallsin thepresenceofimpuritieswestudy the phaseshift 
and the transmissioncoefficient aswell as theexact energyspectrum of finite impure lattices, 
To visualize the domain wall scattering we also demonstrate their real-time dynamics 

1. Introduction 

In recent years domain wall- or soliton-like excitations have been theoretically recog- 
nized (Mikeska 1978, 1981) and experimentally verified (Kjems and Steiner 1978, 
Steiner et a1 1983, Regnault er al 1983) as important elementary excitations in both 
ferromagnetic and antiferromagneticchain systems. Both the dynamic, in particular the 
dynamic structure factor as measured in neutron scatteringexperiments, and the static 
(e.g. the specific heat) properties of these systems clearly show contributions from 
solitons as reviewed, among others, by Steiner and Bishop (1986) and Mikeska and 
Steiner (1990). Although the magnetic ions have rather low spin values in  the magnetic 
model substances most widely used-S = 1 and t ,  respectively, in the ferromagnetic 
chain compounds CsNiF, and CHAB, S = -Z in the antiferromagnetic compound TMMC- 
aclassicaldescriptionofsolitonsisused widelyinagreement with the fact that thesoliton 
is a classical concept. 

Despite the fact that thisclassicaldescription is surprisingly successful, it is interesting 
both from a fundamental as well as from a practical point of view to study the analogue 
of classical soliton excitations in genuine quantum systems. It is the purpose of the 
present paper to present such a study for spin chains with S = 4, which on the one hand 
are genuinequantumsystemsofrealexperimental interest, andon theother handin the 
king limit display the domain wall as basic excitation in direct analogy to the classical 
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case. We will thus deal with magnetic chains of Ising symmetry and will consider 
Hamiltonians of the following type 

H J Mikeska et a1 

N-1 

X = -U z s:s:,+ I + X' = $elsing + XI. (1.1) 
"=I 

The first termin(I.l)istheIsingHamiltonian(wewill takethexdirectionasthedirection 
of possible long range order throughout this paper) and the perturbing contribution X' 
is one of the following: 

N-I 

X i  = -258 (SiS;,, + S:S:+l) (1.2) 
n =  I 

(Ising model with transverse interactions orxxz model), 

(anisotropic xy model), 

(Ising model in a transverse field). 
These systems are convenient for our purposes for two reasons: 

(i) The classical analogues of these systems have been rather well investigated with 
respect to their soliton induced properties. Close to the Ising limit classical domain walls 
are extremely localized (for the model %e; see e.g. PrelovSek and Sega 1981), whereas 
in the opposite limit the domain wallscan approach those described by theclassical sine- 
Gordon chain (as discussed by Elstner and Mikeska (1989) for the model described by 

(ii) Forspint theexactsolutionfor thespinchainHamiltoniansgivenaboveisknown 
generally from the Betheansari approach; thissolution isparticularlysimple for models 
X i  and X i ,  where the Hamiltonians can be explicitly diagonalized introducing fermion 
operators (Lieb era! 1961). 

Since this solution is continuous in the interaction parameters, it is clear that the 
basic fermion excitation will be related to the domain wall of the Ising chain and we will 
exploit this relation in detail in section 2. We will introduce domain wall creation and 
annihilation operators and describe our chains completely in terms of domain walls 
mediating between the two degenerate ground states, which characterize the model 
chains above (for non-vanishing y and 1 - E in the xy and x * z  cases respectively), when 
infinitely long chains with free ends are considered (Lieb etaf 1961, Pesch and Mikeska 
1978). Close to the Ising limit the eigenstates are grouped in bands with a fixed number 
of domain walls. 

In the usual treatment with periodic or free boundary conditions the immediate 
significance of domain walls is obscured by the translational invariance and by the 
twofold symmetry of the lsing like Hamiltonian. In the thermodynamic limit, the 
boundary conditions can be ignored for properties such as the specific heat, the nature 
of the system being determined by a characteristic length. Thus the individual domain 
wall has a fundamental role in thermodynamics (Mikeska and Steiner 1990). With 

Xi). 
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periodic boundary conditions, the spin-wave like excitations are the fundamental exci- 
tations (Ishimura and Shiba 1980), but they can be expressed by a combination of two 
domain walls in the thermodynamic limit. Normally, the effects of domain walls are 
therefore seen only indirectly. To display the spatial structure of domain walls more 
directly, we will consider different boundary conditions in section 2: by fixing the first 
and last spins in directions opposite to each other, we force the chain to have at least one 
domainwallwhich, then, can beinvestigated in realspaceandcompared withitsclassical 
analogue. An approximate analytical approach to this question is given by restricting 
ourselves to the one-domain wall subspace; the quality of this approximation is checked 
by solving the same problem numerically for finite chains. The results from these two 
approaches completely agree. We find that the quantum domain wall is never localized, 
quantum diffusion completely masks the exponential approach to the asymptotic value 
in the classical case. Thus there does not exist a characteristic length in domain walls for 
S = 4 Ising-like magnetic chains. The relation of this quantum delocalization of domain 
walls to the roughening problem is discussed in an appendix. In section 3 we will illustrate 
the domain wall description by considering the scattering of domain walls in magnetic 
chains with impurities. 

The S = & king chain with small transverse interactions (model 1 above) is of direct 
experimental relevance, since it represents rather well the magnetic chain compound 
CsCoC13. The soliton related properties of this substance have been investigated (see 
e.g. Yoshizawa et a1 1981) and the relation between soliton and spin-wave excitations 
has been discussed in some detail (Buyers 1983, Smit ef a1 1989, Mikeska and Steiner 
1990). Theoretically this model was first analysed by Villain (1975) and our approach to 
this system and the results given below should be considered as a further development 
and generalization of his approach. 

Although the present paper does not give any specific predictions for experimental 
results, it attempts to make clear where to expect characteristic experimental signatures 
of domain walls in quantum spin chains and, in the case of impure chains, suggests to 
look for the confinement of domain walls in a substance like CsCoClj. We intend to 
supplement these remarks with more specific calculations in the future. 

Considering the marked difference in the shape of the domain wall between the 
S = 4 chains to be described in this work and in the classical limit it is of course natural 
to ask how the behaviour in the classical limit is obtained when the spin length S is vaned 
between S = 4 and S = m. There exist investigations in the semiclassical limit 1/S 4 1 
(Mikeska et a[ 1989), which show an increase of the soliton width owing to quantum 
effects. On the other hand, the present approximate approach of considering the one- 
domain wall subspace only can be generalized to arbitrary values of S. These results 
together with supporting numerical calculations lead to a rather complete picture of the 
dependence of the domain wall structure and mobility on the spin value S as well as on 
the transition between the extreme quantum and the classical limits and are as yet 
unpublished (Mikeska and Miyashita 1990). 

2. Domain wall creation and annihilation operators in S = t king-like chains 

In this section we will formulate the king-like S = 4 magneticchains as definedin (1.1- 
1.4) completely in terms of domain wall operators and relate spin expectation values to 
domain wall averages. For this purpose we make use of the representation of these 



2988 

Hamiltonians in terms of fermion operators c,, c,', as introduced by Lieb et al(1961). 
We define the fermion operators 

H J Mikeska et a! 

and note their relation to the original spin operators 

S i  = d(a,' + a , )  S i  = (1/2i)(ai - a , )  S i  = czc,  - 4. (2 .2)  

To obtain the domain wall representation we introduce 

A ,  = c,' + c, E ,  = c,' - C, (2.3) 

as intermediate operators with the properties 

A,' = A ,  E: = - E .  
(2.4) 

{ A , , A , } =  - @ , . B , } = 2 6 , .  {A,, En} = 0. 

Starting from these operators, we define as domain wall operators 

Dn &Ant,  + En) 0,' = W n t  I - En) (2.5) 

with fermion commutation relations 

@ A ,  D J  = 6," {DA,  D,'} = ID,, D n }  = 0. (2.6) 

The reason why we call 0,' , D, domain wall operators become apparent when we 
consider their effect on an arbitrary basis state laI, cyz, . . . cyN) for a chain with free ends 
(sites 1 to N )  (cy = + or -, quantization axis is the x axis). By direct calculation we 
obtain 

Dnilcy~, (YZ....~~, (Y"*I . . . ( Y N V ) =  ~ ( ( Y , + [ Y . + I ) I - ( Y I , - L Y z ,  . . . - ( Y ~ , ( Y ~ + I  . . .  OIN)  

D , I - o I , - ~ u ~  , . . .  - L Y , , ( Y , +  ~ . . . a ~ ) ~ ~ ( c y . f a , ~ l ) ~ c y l , c y ~ , . . . c y . , c y , ~ ~ . . . c y N ) .  

(2.7) 

0,' (D.) thus changes the orientation of all spins on sites 1 t o n  and produces phase 
factors to create or annihilate a domain wall between sites n and n + 1, respectively. 
When the spins on adjacent sites are antiparallel, a ferromagnetic domain wall already 
exists and 0,' gives zero. Depending on the initial state, 0,' creates either a soliton 
(spin change from - to +, when one proceeds along the chain) or an antisoliton (spin 
change from + to -). The difference between these two possibilities is reflected in the 
phase of the resulting state. From (2 .7)  it is also clear that 0,' and D, interchange their 
role when antiferromagnetic coupling is considered: application of D, leads from anti- 
parallel to parallel spins at sites n and n + 1 and thus creates an antiferromagnetic 
domain wall. Likewise D,'D. is seen to be a projector to the subspace with different 
spin orientations at sites n and n + 1 and is thus the domain wall number operator. 

A special role is played by the domain wall operators referring to sites at the 
boundaries: to make the mapping from the usual fermion representation to the domain 
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wall representation complete we have to give A ,  and BN in terms of domain wall 
operators. To do so we define 

Do $(A I + B N )  D; = 1(A I - BN). (2.8) 

In terms of the domain wall operators the king Hamiltonian takes the simple form (we 
consider ferromagnetic coupling for definiteness) 

N -  I 

X I ~ ~ . ~ = - U ( N -  1)+J  D:D.. (2.9) 
= = I  

The energy is thus obtained by counting the number of domain walls. Do and 0; 
commute with Xlsing; these operators are not domain wall operators, but serve instead 
to distinguish the two degenerate states resulting Gom turning around all spins. They 
transform between these states in the following way: 

(Do' + Dn)lrul, . . . ( Y N )  = C Y l r u i , .  . . Q) 

(D: - Do)ln, .  . . . ( Y N )  = CYNI -el,. . . -ruN). 
(2.10) 

Spin chain Hamiltonians are now easily written in the domain wall representation as 
X = + X ' ,  and we obtain in the three cases discussed above: 

(i) xxz model: 

N -  1 

%e; = -JE (-D:-lDv+l + D:-lD:+I + HC)DTD. (2.11) 
n= I 

(ii) anisotropicxy model: 

(iii) king model in a transverse field: 

N 

(2.12) 

(2.13) 

Here we define DN: = Do. As is well known for these fermion representations, the xxz 
model contains interactions between domain walls, whereas the remaining two models 
are free fermion models (involving both scattering and pair production and annihilation 
of domain walls, respectively), which can be diagonalized exactly. 

Equations (2.9, 2.11-2.13) are remarkable since they provide a formulation of 
soliton supporting magnetic chains directly in terms of soliton creation and annihilation 
operators, whereas, sofar, soliton theories have restricted themselves to one sector with 
adefinite number of solitons from the beginning. An attempt to present a formulation 
in thisspirit hasactually been performed byDevreuxandBoucher(1987); this, however, 
did not succeed in establishing a valid transformation from spin operators to fermions 
describing domain walls. Our formulation, on the other hand, only serves to show more 
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directly the problems involved in a direct creation of solitoas by external fields. Let us 
consider the following relations between spin operators and domain wall operators 

H J Mikeska et a1 

" - 1  

S i  =&DO' + D O )  IT (1 -2D;D,) 
p = i  

" - 2  

S i  = (1/2i)(Di + D o )  (1 - 2 D ~ D P ) ( D ~ _ , D :  - D l - , D .  - hc) 
PE1 

(2.14) 

(2.15) 

Sj =t(D,'-lD.' - D,i-,D, +he). (2.16) 

All spin operators are bilinear in the operators D., 0,' ; the only way to change the 
number of domain walls by one using a single-spin operator is to consider boundary 
spins, since Do is not a domain wall operator as noted above. We have e.g. 

S{ = (i/2)(0: - D1) (2.17) 

and similarly for Si, Sk, S;. Thus single domain walls are alw,ays created at the end of 
an open chain-this is exactly the same situation as one finds e.g. in the description of 
the generation of solitons in classical chains described by the sine-Gordon model. On 
the other hand, expressing the operator DA for arbitrary site m by spin operators gives 

(2.18) 

This transformation is highly non-linear and the required combination of spin operators 
to create a single wall is clearly not experimentally accessible. 

In the following we will consider in some more detail the application of the domain 
wall representation to the Ising chain in a transverse field (model (iii) above). The 
Hamiltonian in the form of equations (2.9, 2.13) is easily diagonalized following the 
procedureof Liebetd(l961); the result for the openchain withH < J(which is the case 
of a non-trivial groundstate) is 

N- I 

x = - t J ( N - 1 )  f A q p ~ & ~ q p  +Ao&qo (2.19) 
P'I 

with 

v: = k,.Z + hqnDn) gqn = W9" + V q n )  h,, = 4(4q* - Y9") 

Aq = dl + h2 + 2h cos(q) 

n 
(2.20) 

(2.21) h = H / J .  

The N - 1 real q values and one complex solution q = qo = n -k iK (which we denote by 
the index 0). are determined from the equation 

sin(qN) + h sin[q(N + l)] = 0. (2.22) 

The N - 1 real q values are of the form qp = (p - &,)n/N, 0 < .cP < 1, p = 1, . , . 
N - 1, and the eigenvectors (we define Ye = YqN) are given by: 
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real solutions, 

QqPn = N,(-l)p sin[q(n - N ) ]  

yqp,, = N ,  sin(4n) (2.23 

= N/2 - cos(q(N + l)] sin(qN)/2sin(q) 

complex solution, 

@oo = No(-l)"  sinh[K(n - N ) ]  

Yon = N o  sinh(rtn) (2.24) 

N o 2  = -N/2 + cosh[rr(N + I)] sinh(KN)/Z sinh(K). 

For N+ one has A. - hN+ 0, i.e. the ground state is twofold degenerate. These 
results, of course, are nothing but a variant of the treatment of the king model in a 
transverse field in the fermion representation (F'feuty 1970). In the present context we 
want to use these results to discuss the properties, which characterize the domain wall 
aspects of this model. For this purpose we have calculated expectation values for the 
following states, which evolve continuously to the degenerate domain wall states of the 
king model for h -+ 0: 

10 T )  = ( 1 / m 1  - Vat) lO)  (2.25) 
Im) = % l o t )  (2.26) 

Here10)isoneofthe twodegenerategroundstates,i.e.in thefermionlanguage, qql 0) = 
qol 0) = 0. The state 10 t ) for h -+ 0 evolves to the ordered groundstate of the king 
model with all spins up, whereas the state Im) is continuously related to the one-domain 
wall state of the Ising chain with a spin flip between sites m and m + 1. The state im) is 
constructed in similar manner as the state IYm) of PrelovSel; and Sega (1981); however, 
the correlations induced by the transverse field are taken into account properly. We 
emphasize that 10 )is  an eigenstate of the Hamiltonian for N - t  m, whereas Im) should 
be considered as a wavepacket of eigenstates approximating an Ising domain wall as 
closely as possible. 

Using these states we have calculated the following domain wall related properties: 

(i) The domain wall content of the Ising-like groundstate: 

Sio) = (0 T ID: D. 1 0 ). (2.27) 

The result of the calculation for N = 100 is given in figure 1 for n = 50, i.e. a spin at the 
chain centre. and for n = 1, a boundary spin. One sees that, generally, the number of 
domain walls in the groundstate of the correlated chain grows rather slowly with h. 
Owing to the free boundary conditions the probability of the occurrence of a domain 
wall is somewhat larger for a spin close to the boundary than for a spin at the centre. 

(ii) The domain wall content of the state Im): 

Sim) = (mlD,+D,lm). (2.28) 

Results are shown in figure 2. One sees that the domain wall density is strongly centred 
at the site m = n ,  which qualitatively confirms the physical motivation for the con- 
struction of the state Im). This is clearly visible for small values of h,  see figure 2(a), 
whereas for finite values of h,  see figure 2(b), a finite domain wall density (of the same 
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O.' 'i ,./ 

/// I 4  .._ 

/ 
I , Figure 1. The domain wall content df'l of the ,/ .. : .. , ground s ~ d t e ~ f : ! h e . l ~ ~ n ~ . c h a i n  with N = 100 in 

0.?3 a% 0.15 i.00 a transGerse field H = hJ for (0)  n = 50 and (b)  
! -I... .I" 

h * = I  

1.00 

~ ~~ 2 5  .I\ 90, ~ ~ 4 0 ,  l~o,  ~~"loo~"~I, 6;"') 

..~.. ... . - ~ ~  
~~ ~ ~~ I00 

Figure 2. The domain wall content 6:"'' of t h e  domain wall state Im) of the Ising chain with 
N =  lOOinatransversefieldforn= 50. ( a ) H / J = O . l . ( b ) H , ' J =  0.99. 

n 

order of magnitude as in the groundstate) appears for sites m # E .  This clearly reflects 
the fact that Im) is not an eigenstate of the Hamiltonian. As we will see below, it is not 
possible to construct localized domain wall states as eigenstates. 

(iii) The spatial variation of thex component of spin, which characterizes the tran- 
sition between the two degenerate ground states in real space and permits a direct 
comparison to  the classical behaviour. In view of the highly non-linear relation between 
the spin operators and the domain wall operators, see (2.14) above, we have restricted 
ourselves in this case to  the low density limit, using the approximation 

(1 - ZD,iD,) = 1 - 2 2DiD,. 
,I - I " - 1  

(2.29) 

From figure 3 it is clear that the general behaviour of (Si) is as expected, showing the 
localized transition between the asymptotic values (S;) = 2 1. The approximation 
(2.29). however. introduces numerical errors which accumulate with increasingn: mean- 
ingful resultscan thereforeonlybegiven forsufficientlysmall valuesofH/J. Ofparticular 

p=1 c=  I 
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Flgure3. Spatialvariation of(S:) in aone-domain 
wa1lstatelm)ofthe Isingchaininatransverse field 
(N = 80, m = 20) using (2.29). Full lines H / J  = 
0.05, broken lines HJJ = 0.2. 

............_.. 

I 2 5  I .50 ' .75 l .oo l  
7 

Figure 4. Dependence of the complete energy 
spectrumoftheanisotropicxychain with N= 80" 
the anisotropy parameter y .  

interest is the approach to the asymptotic behaviour far from the centre of the wall. The 
analysis below showsthat this approachisnot exponential but governed by apower law. 
The description of the quantum spin chain in terms of domain walls becomes particularly 
simpleclosetothelsinglimit. Let usconsidertheanisotropicxychain,(1.3), withstrong 
magnetic fields ? B, at the right (left) boundary of our chain to break the %cx symmetry 
and to force the chain to contain at least one domain wall. The resulting energy spectrum 
for a finite chain and in the limit B, + m (tantamount to fixing the spins at the boundary 
sites as down and up, respectively) is given in figure 4 and shows, for y s 1, states 
grouped in bands with 1,3,5 . . . domain walls. The energy difference between these 
bandsisJ, whereas thewidth of the bandsfor y+ 1 isJ(1 - y).  Wesee that thesplitting 
into distinct bands is the basic qualitative feature of the system for values of y 3 0.5. It 
thus appears to be a reasonable approximation in this parameter range to take into 
account only the lowest band, i.e. to restrict calculations to the one-domain wall 
subspace. Considering (2.11-2.13) this approximation amounts to neglecting the pair 
creation and annihilation terms and is equivalent to describing the domain wall as a free 
particle moving in a well; the condition of fixing the boundary spins by the symmetry 
breaking magnetic fields then translates into a vanishing of the wavefunction of this 
particle at the chain boundaries. 

In order to both illustrate the one-domain wall approximation and to check its 
validity, we now consider the expectation value of the order parameter (Si) for the 
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I .o 
c s* > 

.5 

.o 

-.5 

I 

<s=>l\ y4 
.O Figure 5. Spatial variation of (S") in a spin chain 

with boundary spins fixed at 21 to enforce the 
presence of a domain wall. Results of the one- 
domain wall approximation (full curves) are com- 
pared with finite chain result5 (see inset). (a )  
Ground state of the transverse field king model 

-.5 .Q .5  1.0 wirhHI3 = 0.I.(b)Firslexciledstateofrhetrans- 

@ 
-.5 

~ Ni ~ 

A I. i xo 

z verse field king model with H I I  = 0.1. 

standard situation of a domain wall mediating between two equivalent groundstates to 
the far right and far left of its position respectively. We use a continuum description with 
spatial coordinate z = 2n/N - 1 ~ - 1 6 z S 1. In the XYZ chain with antiferromagnetic 
coupling and the anisotropic xy chain, this continuum approximation involves only 
either even or odd sites owing to the hopping by two sites, see (2.11,2.12); apart from 
this difference all models become equivalent. The probability of the domain wall in the 
groundstate of the chain with fixed boundary spins IY8) being found at position z is then 
given by lYR(z)12 = cos2[(.r/2)z], which leads to 

(2.30) 

In figure 5(a) we compare this result in the one-domain wall approximation with numeri- 
cal resultsfor the Isingchain ina transverse field (model (iii)). Theagreement illustrates 
that the restriction to the one-domain wall subspace is an excellent approximation for 
the parameters used. Corresponding results can be given for excited states. For the first 
excited state the result is given in figure 5(b); here the transition from -1  to t 1 occurs 
in twosteps. Forhigherexcitedstatesthistransition takesan increasing number ofsteps, 
until a behaviour that is close to linear is obtained in the middle of the band. We then 
find that these lowest excitations are rather well described by the physical concept of a 
domain wall moving in a well, and that non-linearity has little effect in this context. 

The spatial variation of the transition between the two equivalent groundstates as 
shown in figure 5 appears qualitatively similar to classical soliton shapes, e.g. to the 
sine-Gordon soliton. The important difference, however, is  that the approach to  the 
asymptotic values is by a power law and not exponential. This observation indicates a 

( V R l ~ ; l ~ 8 ) + f o ( z )  = z + ( l /n)s in(m).  
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basic difference in the structure of domain walls in S = 4 spin chains as compared with 
classical chains: in classical chains the domain wall is centred at an arbitrary site and the 
transitionfrom -Sto +Soccursinseveralstepsinafiniteregioninspace. InS = ?chains 
the corresponding local transition is from -4 to +? and therefore takes place at a single 
site, thequantum mechanicalpossibilityofhopping to aneighbouringsite then, however, 
leads to a spreading of this extremely localized structure over the whole chain. A 
behaviour in direct analogy to the classical one is possible only when the hopping is 
forbidden by conservation laws. This is the case for model (i) with ferromagnetic 
coupling, where S;o, is conserved. In this case even for S = 4 the domain wall remains 
localized, merely getting dressed by spin waves. The quantum mechanically induced 
spreading of the domain wall over the whole chain has a direct analogue in a classical 
model in two dimensions, where it corresponds to the distribution of an interface. We 
briefly describe this analogy in the appendix. 

In our treatment above, all domain wails are centred at the middle of the chain; this 
is due to the boundary conditions, which require a symmetric behaviour. Although in 
principle this influence of the boundary conditions is also present in the classical case, 
there is an important quantitative difference: the energy associated with shifting a 
localized wall to an arbitrary site on the chain decreases exponentially with N in the 
classical case, but only as 1," in the quantum case. In this sense, the equivalence of 
different sites. which classically can be safely assumed in practice, is removed in the 
quantum system. 

Our result is consistent with indications found in the approach of Puga and Beck 
(1982). These authors have calculated the analogue of the classical soliton contribution 
to the out-of-plane dynamic structure factor for the S = 4 anisotropic xy model and have 
found a narrowing of the q dependence. This narrowing reflects the increased spatial 
extent and should be considered as the experimentally accessible signatureof the domain 
wallstructure oflsing-likes = tchains asopposed to thecorrespondingclassicalsystems. 

On the other hand, the quantum correction to the spatial width of the classical sine- 
Gordon soliton as discussed by Mikeska er a[ (1989) in a semiclassical approach is of a 
different nature: the increase in width with l/Sfound in this approach isto be understood 
as a quantum broadening of the classical local spatial structure. This structure will also 
be subject to quantum diffusion, i.e. to the tendency to spread over the whole chain. 
However, a theory for finite S #? i s  required to describe this fully. 

We thus conclude that the one-domain wall approximation is qualitatively, and for 
small values of h even quantitatively, a good approximation for Ising-like spin chains 
with S = 1. The most important characteristic of quantum domain walls in chains with 
this symmetry is that any local spatial structure, which usually characterizes the cor- 
responding classical model, is completely masked by quantum diffusion, which allows 
the domain wall to spread over the whole chain. 

3. Domain wall scattering by impurities 

In this section we will study the scattering of a domain wall by impurities in a S = 4 Ising- 
like magnetic chain. On the one hand this will illubtrate the concept of a domain wall as 
a particle by studying its motion; on the other hand, this problem has attracted interest 
experimentally in order to understand the result of NMR experiments (Goto 1989, Feme 
eta[ 1983), in particular for the effect of domain wall diff usion on T, (Boucher er af 1985, 
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Ajiro ef al1989). We will consider the king model with transverse interactions ((l.l),  
(1.2)) for antiferromagnetic coupling and will study two different types of impurities: 

H J Mikeska et ai 

(i) A quenched magnetic impurity on the chain at site N + 1. Putting Sb+ = +1 we 
write the Hamiltonian as 

X = Xlnng + 3ti + ( J  + .I&. (3.1) 

In the special case J ,  = -J we obtain the case of a nonmagnetic impurity, which, 
however, is identical to the case of a finite chain treated in the last section. 

(ii) Impurities on a neighbouring chain. In this case we introduce an interchain 
interaction as 

%inrcrrhain(n.m) = 2[J.L2(sisk + s$%) + J:sisL1 
where m denotes the position of the neighbour of n on the neighbouring chain. If the 
lattice is complete, the contributions from two neighbouring chains, with oppositely 
oriented spins, cancel. An impurity on one neighbouring chain, however, results in a 
magnetic field acting on the spin on site n according to 

Hhp = J'SV, + J"S; + 2JDSY;, 

The factor two for the x-component is put in for later convenience. Here we mainly 
consider the case J ' ,  J" 2JD. that is 

HImp= 2 J ~ s i .  (3.2) 

In order to confirm the one-domain wall approximation we will also study the low 
energy spectrum of finite chains (mainly 16spins) in section 3.2. Furthermore, in section 
3.3 we will demonstrate the time evolution of scattering of domain walls 

lstate(r)) = e-'"lstate(O)) 

to confirm the results with the data obtained in the previous sections. 

3.1. One-domain wail approximarion 

As hasgenerally beenshown insection 2 ,  we canexpress the Hamiltonian in the domain 
wall operators, (2.11). If we are interested in low temperature properties. we could 
ignore the multi-domain interaction. Thus we arrive at the one-domain wall approxi- 
mation, namely 

% =  J E ~  (d,+-ld,+l + HC) (3.3) 
n 

which is the same as that which Villain (1985) has introduced to discuss the central peak 
problem and is similar to the approximation used by Devreux and Boucher (1987). In 
(3.3). d,C = I), is the domain wall creation operator for antiferromagnetic coupling. 
Here and in the following, energies are measured with respect to the energy E,, = IJI 
of one antiferromagnetic domain wall. Let us denote by Ip) the state where the domain 
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wall is between sites p - 1 and p. Thus the plane wave describing the domain wall is 
expressed as 

~ k )  = C (ae'Kp + be-'@) Ip). 
P 

In a homogeneous chain, lk) is an eigenvector and the eigenvalue is 

Ak = Eow + 25.5 cos(2k). (3.4) 
Within this approximation, we can straightforwardly calculate properties of scattering, 
namely the phase shift or the transmission coefficient, etc. For the cases of (3.1), the 
interesting property is the phase shift. Let the wave function have the form: 

I*) = E *(P) IP) (3.5) 
P 

with 

*@) = ethp + re-'& for p S N  

*@) = x for p = N + 1. 

If the impurity is on the site N + 1, the eigenvalue problem for the Hamiltonian (3.1) is 
given by the following equations: 
J & [ ( ~ ' ~ ( P - ~ I + ) . ~ - ~ K ( P - ~ ) )  + (eik(~+? +re-ik(P tz))] =Ak(eib+re-'kp) for p < ~ -  1 

which gives (3.4) and 

~&[(~ikIN-3) + re-ikW-31) + = ~ ~ ( ~ W - 1 1  + ).e-ik(N-I) ) for p = N - l  

j.5[(ei4N-U + re-'KV-]))] - J , x  = A k x  for p = N + l .  

This gives 

= -e2ik(N- 1) ( J ,  - &IJle2ik)/(J, - &IJ/e-"). 

The phasefactor e2ik(N+1) can be replaced by 1 after shifting the origin. In the case (3.1) 
with very IargeJ,, nameIyJeP EIJI, we then haver = -1 and the phase shift is z. 

For the case of (3.2) we are interested in the transmission phenomena and use the 
ailsatz (3.5) for the case of an impurity on the neighbouring chain at site 
nimp ( N  P nimp P 1) with 

*@) = eikp + re-ikp for p < n , ,  

*@) = x for p = nimp 
~ ( p )  = teiii'p for p > nimp. 

Here the eigenvalue problem is given by 
J ~ [ ( ~ W P - ~ )  + ,-W-21) + (eik(~t2) + re-:k(~+2))] + ~ ~ ( ~ i k p  + re-'@) 

= Ak(ei!v + re-ikP) for p < nimp - 2 

) JE[(eik(%p-4) + re-ikln. mp-41) + .] + J , (~W, .~-~I  + e-ik.(n;mp-z) 

= j,k(eik(n;mp-z) + e - i * ( b p - 2 )  ) for p = nimp - 2 

J&[(eik(nimp-2) + re-i!+imp-2))] + JEleik'(";mpt2) + xJ D - A  - kx for p =nimp 

(3.6) 
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k 
Figure 6. k dependence of the transmission coefficient T(k). JD/6IJI = (U) 0.1. (b)  1.0. (c) 
1.5 and ( d )  1.9. 

J E [ ~  + @'(4mrr+4)] - J ,  teik'(ni,,tZ) ik re ik ' (n ,mp+2)  for p = nlmp + 2 

JEr[eik'(P-Zl + e i k ' ( ~ + 2 ) ]  - J D te*p =,3.,reW 

From (3.6) and (3.7) we find 

for p >nimpf 2. (3.7) 

A k  = J D  + 2E.151 cos(2k) = -J, + 2FIJI cos(2k') 

i.e. 

cos(2k') = cos(2k) + JD/~IJI. 

The remaining equations give the transmission coefficient 

T(k) = sin(2k')/sio(2k)lt[* = sin(2k) sin(2k')/sin2(k + k'). 

Thus T(k) depends only on the ratioJp/E(J(. If this ratio is larger than 2.0, no solution 
for k' exists, which means T(k) = 0. In figure 6, the k-dependence of Tis  plotted for 
severalratios. Fornegativevaluesoftheratio. T(k) isobtained byputtingk- 4 2  - k. 
Here we find that the domain wall cannot pass the impurity from either side, namely 
from the high energy region to the low energyregion or the opposite, ifJ,i> EIJI. Thus, 
if we have a strong magnetic field at a site on the chain, the domain wall is reflected by 
it regardless of the side from which the domain wall incidents. But if we have a strong 
field at two neighbouring sites domain walls can be transmitted because the wavevectors 
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(6) 
1.0 

.5 

_ c  .. 

-1.1 

-I -14  

PW 

1.0 Sb) 1 

Figure 7. (a) The energy spectra for I D  = 0.0 and 
0.3; the shaded areas denote the band of three- 
domain wall states. ( b )  Wave functions for JD = 
0.0. ( c )  Wave functions forl, = 0.3. SymbolsO, 
A ,  t , X.O,*, 4,O,Xcorrespond to the ground 
state and ith excited states ( i =  1 to 8). respect- 
ively. 

I 
-1.0 J 

-1.0 

k and k' to the left and to the right of these two sites, respectively, are the same. The 
transmission coefficient for this case can be calculated similarly to the case treated above. 

3.2.  Energy spectrum [band structure) ofjinite lattices 

In this section we will study the energy spectrum for finite chains by a direct numerical 
methodandcompare themwith thoseexpectedfrom theone-domainwallapproximation 
in order to check this approximation. We mainly investigate a chain with 18 spins using 
boundary conditions which fix the spins at sites n = 0 and n = 17 as down, thus enforcing 
an odd number of domain walls for antiferromagnetic coupling. In figure 7(a), the 
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eigenvalues without and with animpurityoftype (3.2) at thepositionn,,, = 8with J D  = 
0.3 are shown. The value of elJl is 0.05. The eigenfunctions are expressed as 

H J Mikeska et a1 

lq) = x V(P)lP) + z CIli) 
P I 

where Ip) is a one-domain wall state as used in the previous section and /j) denotes a 
multi-domain state. 

In figure 7(b) ,  ~ ( p )  is plotted for the system without impurity and for J D  = 0. VI@) 
is the probability amplitude for a domain wall between sitesp andp  + 1 0, = 0,1,. I . 
16). The wavefunctions q(p) for the lower four states are given in the upper graph and 
theothers are in the lower. In figure7(c), the correspondingdataforJD = 0.3 aregiven. 
It should be noted that the eigenstates in figure 7(b) and those in figure 7(c) are not 
adiabatically connected. 

We find that Z,lc,lz is less than lo-?. We also find that the band of one-domain wall 
states is well separated from the band of three-domain wall states. In figure 7 ( a )  the 
shaded area shows the band of three-domain wall states (two-domain wall states cannot 
appear due to the boundary condition). Furthermore, the shape of the wave function is 
not much different from that obtained by the approximation. Thus the approximation 
in the subspace of one-domain wall states is confirmed by the numerical results. 

The band structure clearly shows the effect of an impurity of type (3.2): the band of 
one-domain wall states is w,ell separated into two bands for J,/eIJI > 2. Each band 
consists ofstates which have a domain wall on one side of the impurity (left or right hand 
side). Thus no transmission occurs through the impurity. On theother hand ifJD S EIJI, 
then the two bands overlap and we have finite transmission coefficients. 

3.3. Initial value problem infinite lattices 

In order to visualize what we have discussed in the previous sections, let us perform a 
real-time development of the wave function: 

lq(0) = e-'"'/q(O)). 

In order to perform this time evolution, we used a method based on the Suzuki-Trotter 
decomposition (Suzuki 1987) 

(3.8) e-iXhr - e-ix,p 
Oil 

for small enough Af and iterated them. We also tested an approximation 

The result is the same within numerical error if we use a small enough value of A.1. The 
form (3.8). however, strictly conserves the normalization of the wave function because 
e-'%' is a unitary transformation. Thus, we mainly used this approach in the present 
study. 

I n  a finite lattice, it is difficult to study the transmission coefficient. Thus, we inves- 
tigatedtheconfinementofadomain wall bytheimpuritiesoftype(3.2)andthebehaviour 
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2Ull 

Figures. Domain wallconfinement. Timedependenceof lyt(p)l’withan initialconfiguration 
a@) = b. 

of a wave packet at the impurity. In figure 8, the confinement of a domain wall between 
two impurities is demonstrated. As we see here, a domain wall is confined regardless of 
the relative energy. Here we have the same lattice as used in section 3.2 with impurities 
of type (3.2) at nimp = 4 and 12 (positions shown by triangles). The values of JD and ~lJl 
are 0.3 and 0.05, respectively. Then the Zeeman energy EZ due to (3.2) is -21, for 
I = 1 and 3, zero for I = 5 , 7 , 9  and 11 and U, for 1 = 13,15 and 17, respectively. Thus 
the positions 1 and 3 are energetically the most stable ones. But we still find the 
confinement of a domain wall between the impurities. If we take into account thermal 
noise, the unstable situation will decay and the domain wall will be released. This finite- 
temperature effect will be studied in the future. 

As we discussed in section 2 ,  it is difficult quantum mechanically to distinguish a 
domain wall in real space in a good quantum state, since quantum fluctuations cause a 
diffusion of domain walls. Even so, it would be interesting to see how a wave packet 

(3.9) 
k k P 

is scattered by impurities. Because we can treat only fmite lattices, it is difficult to have 
a very smooth wave packet. Here we take a = 4, ko = 0 . 3 ~  andpo = 5. In figure 9, the 
propagation of the wavepacket (3.9) isgiven. Here E I J ~  is0.05. Because the plane wave 
has a dispersion relation (3.4), the wavepacket decays after travelling some distance. If 
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Figure 9. Propagation of a wave packet of domain wall states. 

we put an impurity of type (3.2) with J ,  = 0.3 at some position, the wave packet is 
reflected in a manner similar to that shown in figure 8. 

4. Summary and discussion 

In one-dimensional Heisenberg models with king-like anisotropy the domain wall is a 
fundamental excitation, which naturally reminds us of the soliton excitation in the 
corresponding classical system. In order to study the effect of domain walls, we have 
introduced a domain wall representation of operators and expressed several models, 
(1.2-1.4), using this notation. Thus we can define a state Im) with a domain wall at the 
mth position (2.26), which has a localized shape as shown in figure 2 and should be a 
counterpart of a classical state with a soliton at the position m. 

On the other hand, the domain wallrepresentationnaturally leads to theone-domain 
wall approximation, which has been used intuitively before. The one-domain wall 
approximation turns out to give the ground state IYJ for boundary spins fixed opposite 
to each other to be a state where the system has a very smooth transition between the 
twodegenerate states 10 I )and 10 )(figure5). Thissuggests that quantum fluctuations 
cause a diffusion of the localized domain wall; a localized shape with a finite width which 
is determined by the parameters of the Hamiltonian cannot be stable. 
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In order to check which of the states Im) and IYJ gives the better approximation to 
the true ground state, we investigated finite lattices with the boundary conditions 
mentioned before. The result agrees qualitatively and also quantitatively very well 
with the result of the one-domain wall approximation. Thus we conclude that in one- 
dimensional S = 6 chains quantum fluctuations are relevant and smear out the localized 
domain wall of the corresponding classical system. The effect of quantum fluctuations 
of the domain wall is also considered in the interface fluctuation in the two-dimensional 
king model with a corresponding boundary condition; this gives a more intuitive under- 
standing of the quantum diffusion. 

From an experimental point of view the increased spatial extent owing to quantum 
diffusion should be related to a narrowing of the structure factors in Ising-like S = 4 
chains. Whereas the relevance of domain walls for the interpretation of elastic and 
inelastic neutron scattering experiments on CsCoCI, has clearly been demonstrated 
(Yoshizawa et a1 1981, Boucher et a1 1985), a more detailed interpretation of such 
experiments to show the peculiarities of quantum domain walls requires further theor- 
etical work. 

The dynamical nature of the domain wall is also an interesting problem. The one- 
domain wall approximation allows us to introduce the concept of plane waves of domain 
walls. We can then study the scattering of domain walls. We have done this in the one- 
domain wallapproximation and confirmed the resultson finite chainsby direct numerical 
approaches. As a realistic model for the results presented in section 3 we consider 
CsCoCl,, where J = 75 K, J, = 0.13 K and E - 0.1 (Tellenbach and Arend (1977); 
Yoshizawa er a1 1981). In this material, impurities in the neighbour chain cause a 
magnetic field because the interchain interactions cancel each other if the lattice is 
complete. F o r d  ~JDthescatteringrate,asgiveninsection3.1,isverysmall(seefigure 
6 ) .  If, however, stronger magnetic impurities, leading to d J,, are introduced, the 
confinement effect discussed in section 3.3 could be observed. In such a case, it would 
be interesting to study experimentally the temperature dependence of the confinement, 
which was mentioned in section 3.3. A theoretical study of this problem will be given 
elsewhere. 
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Appendix. Quantum domain walls and the classical interface problem 

The problem of diffusion of a domain wall by quantum fluctuation can be related to the 
interface fluctuations in the two-dimensional king model, which can be constructed 
from the quantum chain (1.4), by the Suzuki-Trotter decomposition (Suzuki 1976, 
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Figure 10. Interface configuration of two-dimensional Ising models ( a )  representing the 
Hamiltonian X 3 .  and ( b )  as used :or the problem of  interface roughening. 

1985). Here let us demonstrate this fact for model 3 (1.4) with fixed boundary spins at 
sites 0 (up) and N + 1 (down): 

Tre-o"] = Trexp fiJ 2 G",o"+l + BJ(di - us) + PH 
N-l N 

0:) i " = I  " = I  

Following the well known procedure as described by Suzuki (1976) we have 

Z(,,,, = T r A M N  exp 

N-1 ,U 

+ K ' ( M )  a;!") ( A 4  
n = 1  m=I 

where U!"') = = i 1. A' = cosh(@H/M) sinh@H/M), e-ZK'(M) = tanh(PH/M). 
ZCMl is the partition function of an anisotropic Ising model on a N x M two-dimensional 
lattice with boundary conditions as shown in figure 10(a). In this notation, the spin 
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density (U;) is expressed by (uLm.”’) for any value of m. This problem is quite similar to 
the interface problem which has been studied with the boundary condition shown in 
figure lo(&) (Binder 1983, Abraham 1981, Bricmont et a1 1981). There, the shape of 
(up))  has been obtained to have a Gaussian profile with the interface width of the order 

In the present model, (A.2), the length M and the coupling constants are not 
independent, moreover the boundary condition in the M-direction is periodic and does 
not specify the position of the domain wall. Thus we cannot make use of the results of 
the conventional interface problem directly. Instead we will give a rough estimate in the 
following. 

Since we want to study the ground state of the original quantum model, we put 
p + m. We assume (KO = p J / M )  

of fi. 

sinh(ZK’(M)) sinh(2Ko) > 1 namely H < J (-4.3) 

which assures the ordering of the ground state and also guarantees that the 2D lattice is 
at T C  T,. (ukm)) can be obtained by considering the behaviour of the domain walls on 
the lattice of figure lO(a). Roughly speaking the probability of side steps of the domain 
wall p is 

p = tanh(PH/M)/[l + tanh(@H/M)]. (‘4.4) 

A = a p .  (A.5) 

Because the lattice has length M, the width of the domain wall is of the order of 

In particular in the limit @/M + 0, which makes the correction in (A.l) negligible, we 
have 

(A.6) 
To discuss the limit /3 M-+ 0, we have to consider two physically different situations: if 

n = N + 1, A = m in this situation means that M is sufficiently long for the domain wall 
to make a random walk, forgetting the position at m = 1. It will therefore behave as a 
free particle in a well. If we take M 9 8’. then we have A - 0. But in this case we can 
shift the position of the domain wall parallel to the M direction because we have not 
fixed the boundary condition (in contrast to the situation studied for the roughening 
transition, figure lo(&)). A free particle-like behaviour again results from this global 
shifting of the domain wall. 

Thus we conclude that in either case, when the correction O(P/M)’+ 0, the dis- 
tributionofthedomain wallpositionis thatofafreeparticleinawellandthusdetermined 
by the probability distribution leading to (2.30). The diffusive property of the domain 
walls in the S = t chain is seen to be closely analogous to the interface fluctuations in the 
corresponding ZD king model. This analogy has already emerged in the present rough 
treatment of the interface distribution. A rigorous treatment, which includes the effects 
from multi-domain states, similar to the one given by Bricmont et a1 (1981), requires 
further work. 

A = a ( p H / M )  - p H / d / M .  

we take M > p 2 J M, A diverges when p + m. Since we have boundaries at n = 0 and 
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